Write a 11 pages paper on mathematical models.
In solving the above equation, the prevailing boundary conditions must be considered so as to ensure the accuracy of the results is maintained. Due to the fact that this equation is held in a closed system, only the prevailing wall boundary conditions are of utmost importance and need to be considered for a complete simulation (Ferziger and Peric, 1999). This equation states that the acceleration, convection and pressure gradient of a fire in motion is equal to the force of gravity acting on it, body forces, and viscous forces.
This equation is based on Newton’s Second law of motion which holds that acceleration is directly proportional to the force exerted and the force acts in the direction of acceleration. (Wesseling, 2000) With regard to this, it is therefore important to note that when solving this equation, both the prevailing inlet and outlet boundary conditions must be put into consideration. This ensures that these can be used to compute the acceleration as well as the momentum. This equation states that the temperature rise of a flame coupled with the convective heat transfer is equal to the change in pressure over the same time plus heat released per unit volume from reaction less energy transferred to evaporating droplets and diffusion energy in addition to any other heat source3.
The basis for this equation is the first law of thermodynamics which is itself an application of the principle of conservation of energy for thermodynamic and heat systems. The law holds that energy can neither be created nor destroyed. Thus, the energy flowing within a CFD is maintained throughout the simulation. All the boundary conditions, therefore, need to be considered when solving CFD problems using this equation so as to link the surroundings and the simulation model and also define the net interchange of energy from the surroundings to the model and vice versa.
Dirichlet – This is a boundary condition that is enforced on an ordinary or partial differential equation. It specifies the values that a solution to a problem should take on along the limits of the area. In CFD analysis the no-slip condition for viscous fluids posits that at a solid boundary a fluid will have zero velocity relative to the limit.
• Neumann – This is a boundary condition that when enforced on an ordinary or a partial differential equation, stipulates the values that the derivative of a solution is to take on the limits of the area affected.
Select your paper details and see how much our professional writing services will cost.
Our custom human-written papers from top essay writers are always free from plagiarism.
Your data and payment info stay secured every time you get our help from an essay writer.
Your money is safe with us. If your plans change, you can get it sent back to your card.
We offer more than just hand-crafted papers customized for you. Here are more of our greatest perks.
Get instant answers to the questions that students ask most often.
See full FAQWe complete each paper from scratch, and in order to make you feel safe regarding its authenticity, we check our content for plagiarism before its delivery. To do that, we use our in-house software, which can find not only copy-pasted fragments, but even paraphrased pieces of text. Unlike popular plagiarism-detection systems, which are used by most universities (e.g. Turnitin.com), we do not report to any public databases—therefore, such checking is safe.
We provide a plagiarism-free guarantee that ensures your paper is always checked for its uniqueness. Please note that it is possible for a writing company to guarantee an absence of plagiarism against open Internet sources and a number of certain databases, but there is no technology (except for turnitin.com itself) that could guarantee no plagiarism against all sources that are indexed by turnitin. If you want to be 100% sure of your paper’s originality, we suggest you check it using the WriteCheck service from turnitin.com and send us the report.
Yes. You can have a free revision during 7 days after you’ve approved the paper. To apply for a free revision, please press the revision request button on your personal order page. You can also apply for another writer to make a revision of your paper, but in such a case, we can ask you for an additional 12 hours, as we might need some time to find another writer to work on your order.
After the 7-day period, free revisions become unavailable, and we will be able to propose only the paid option of a minor or major revision of your paper. These options are mentioned on your personal order page.